Sunday, April 1, 2018

Chronic systemic inflammation in Lupus could be driven by bacterial antigen mimicry to human autoantigen Ro60

Earlier I discussed a new study in journal Science from Martin Kriegel's lab at Yale University School of Medicine that showed how translocation of commensal bacterial species E. gallinarum could amplify autoimmune phenotype in Lupus prone mouse model. It appears that his lab had another paper under review that was published this week in Science Translation Medicine, a sister publication run by Science. In this study the authors tried to show that auto-reactivity to auto-antigen Ro60 frequently observed in lupus susceptible patients could potentially be driven and sustained by commensal microbial species [turned pathobionts] expressing Ro60-like molecules.

The authors showed that there are substantial overlap between T cell epitopes in human Ro60 and Ro60 molecule from bacterial species such as Propionibacterium propionicum (P. prop) and Bacteroides thetaiotaomicron (B. theta)

Memory T cells freshly sorted from anti-Ro60 reactive SLE (lupus) patients responded to P. prop and B. theta lysates.   

In summary, this study suggests that commensal bacterial species turned pathobionts could initiate and sustain lupus phenotype in susceptible individuals. This is not a definitive study. First, it is obvious that commensals per se cannot induce lupus but only in susceptible individuals (almost every individual carries these commensals). What exactly constitutes this susceptibility in humans to lupus [or any other autoimmune diseases] is a black box presently. Moreover, their "analysis revealed no significantly different bacterial OTUs in the fecal, oral, or skin microbiomes between anti-Ro60–positive and anti-Ro60–negative subjects". However since resolution of currently available microbiome analytical tools are quite low it is still possible that at bacterial species or strain level there maybe significant differences between healthy vs. lupus and Ro60-positive vs. Ro60-negative populations.

posted by David Usharauli

No comments:

Post a Comment